

Introduction

L2CCR: No Dust L1B vs L20

L1B vs L2CC UMBC vs L2 retrievals Conclusions

AIRS Retrievals of Dust-Contaminated Cloud-Cleared Radiances

Sergio DeSouza-Machado, Larrabee Strow, S. E. Hannon, B. Imbiriba

Atmospheric Spectroscopy Laboratory (ASL) Joint Center for Earth Systems Technology and University of Maryland Baltimore County Physics Department

Airs Science Team Meeting - Passadena - CA May 4, 2009

Desert Dust

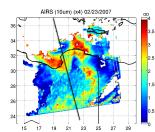
Introduction
Data

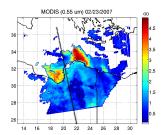
UMBC vs retrievals Science and Climate:

- (Mineral) desert dust storms can spread over vast geographical areas during different seasons
- Magnitude of climate forcing by clouds/aerosols is uncertain, and is as large as that due to greenhouse gases (IPCC 2007)
- AIRS can directly measure longwave forcing
- Dust in the atmosphere can dry/heat atmospheric layers and change stability of the atmosphere

AIRS L2 products:

- Can significantly reduce yield and accuracy of L2 products
- We hope to show that our scattering RTA with dust retrievals can improve the L2 products, and their accuracy
- Dust, if ignored, can preclude AIRS helping with Atlantic hurricane forecasts

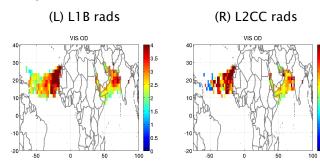



Comparisons with A-Train Instruments

Introduction Data

L2CCR: No Dust L1B vs L2CC UMBC vs L2 retrievals Conclusions

- We have performed an extensive comparison between AIRS and other A-Train instruments that measure mineral dust
- AIRS competitive with MODIS, POLDER, OMI, CALIPSO
- AIRS works day/night, over land/ocean (no sunglint problems)
- Can retrieve dust layer heights, and estimate OLR dust forcing
- MODIS can display unphysical discontinuities going from ocean to bright land surfaces (deserts!) compared to AIRS
- CALIPSO has excellent vertical resolution but over very limited area, aux


Data

Dust event

We chose a new dust event for this study

Major dust episode week of June 21-25, 2008

- Retrieved optical depth (OD) using Rodger's type minimization. ECMWF for initial guess.
- Effect of dust: VIS OD value of 4 (thick dust) corresponds to AIRS (obs-calc) about (-1.3,-3.3) K at (820 cm⁻¹,960 cm⁻¹)

Method

Data L2CCR: No Dust L1B vs L2CC UMBC vs L2 retrievals

- 2 um effective radius, with scattering parameters from Volz
- dust layer heights from GOCART climatology (1km thick).
- Use LW channels to fit {dust amount, stemp, T(z), Water(z)}
- UMBC Optimal Estimation method starts with ECMWF
- ullet remember factor of $\simeq 9$ reduction going from L1B to L2CC

What	Number of FOVS	Time Span
L1B (dusty)	36327	6/21-6/26/2008
L2CC (dusty)	4595	6/21-6/26/2008
L2CC (our random clear)	1512	6/21/2008

Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2
retrievals

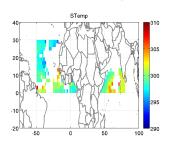
UMBC sea emissivity = Masuda Success = bias for following channels $\leq \delta BT_{max}$

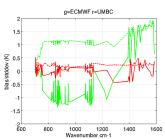
- dust affected window channels: 822, 961, 1231 cm⁻¹
- Water channel 1436.5 cm⁻¹, Temp channel 773.6 cm⁻¹
 Fractional yield, having started with ECMWF profiles

	Num FOVS	δBT_{max}	yield
L1B	36327	1.0	0.73
$(visOD \leq 4)$		2.0	0.75
(dust flag)			
L2CC	4595	1.0	0.60
$(visOD \leq 4)$		2.0	0.67
(dust flag)			
L2CC	1512	1.0	0.97
randomly clear		2.0	0.99
(quality flag = 0)			
$(visOD \leq 0.01)$			

L2CCR: No

Dust

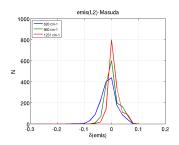

L2CCR w/ no dust


Check out our retreival w/o dust contamination

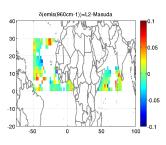
Choose L2CC qual=0 (best) radiances with no dust signature Look at biases (solid), stddev(dash)

(L) area coverage

(R) biases


L2CCR w/ no dust: Emissivity

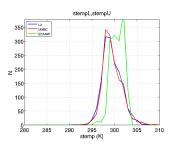
Introduction Data

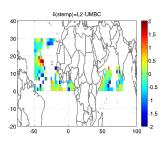

L2CCR: No Dust

L1B vs L2CC UMBC vs L2 retrievals Conclusions

(L) histogram

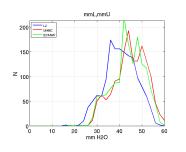
(R) map

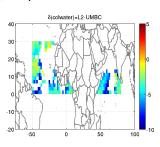



ASL L2CCR w/ no dust: SST

L2CCR: No Dust

(L) histogram


(R) map



L2CCR w/ no dust: Column Water

UMBC seems to be wetter than L2?
(L) histogram (R) map

10/20

L2CCR: No Dust

Dusty FOVS

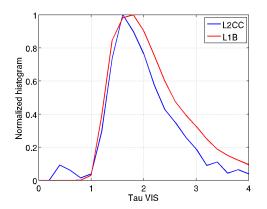
We ran retrievals on both L1b and L2CC

Choose L2CC qual=0,1,2 "dusty" rads Choose L1B "dusty" rads

- biases and std devs look VERY similar for L2CC, L1B
- Retrieved profiles and SSTs, col water amts look very similar
- Retrieved dust OD looks similar (except at low OD end)

4595 L2CC profiles : 1780 = qual 0 (best), 2815 = qual 2 (bad) We get the following yield

num FOVS	$\delta BT_{max} = 1 K$	$\delta BT_{max} = 2K$
1780	0.77	0.84
-	-	-
2815	0.49	0.55
4595	0.60	0.67
	1780 - 2815	1780 0.77 2815 0.49


Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2
retrievals
Conclusions

Dusty FOVS Optical Depths

L1B vs L2CC

Though ODs from L2CC are different than ODs from L1B at small τ end, we can get some good dust science with L2CC!!!!

Retrievals: 06/21-26/08: Overall message

Introduction
Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2

Compare to L2 sup products against UMBC retrievals

- if L2CCR qual = 0, can improve L2 yield down to surface by >> 300%!!!
- if L2CCR qual = 2, UMBC gets a larger yield than L2
- No correlation of "surf" qual flag with retrieved dust OD

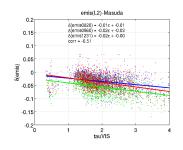
Larger UMBC retrieved dust amounts correlate with reduced L2 retrieved emissivity.

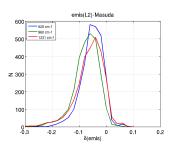
To get same BT(820),BT(960),BT(1231), this means L2 has to

- increase stemp as emis decreases (negative correlation) AND/OR
- decrease colwater as emis decreases (positive correlation)

Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2
retrievals

For the 1780 L2CCR qual=0 (best), 2815 L2CCR qual=2 (bad) Fovs, (Cloud_OLR, Temp_Profile_Bot, H2O, Surf) quality flags for L2 products gives following stats


L2 product	quality flag	yield	yield
•	. , ,	(L2CCRqual=0)	(L2CCRqual=2)
olr	0	1.00	1.0
olr	0,1	1.00	1.0
surf	0	0.02	0
surf	0,1	0.25	0
temp	0	0.76	0
temp	0,1	1.00	0
water	0	0.76	0
water	0,1	0.99	0.99
UMBC	$\delta BT_{max} = 1 \text{ K}$	0.77	0.49
UMBC	$\delta BT_{max} = 2 \text{ K}$	0.84	0.56



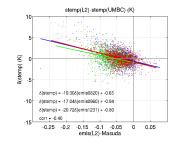
L2 vs UMBC : emissivity change L2-UMBC

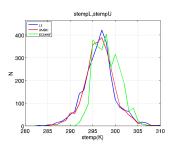
Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2
retrievals

U = UMBC retrieval, L = L2 product blue = 820, green = 960, red = 1231 cm-1 Note the negative correlation Correlations gets stronger for qual=2 (L) correlation (qual=0) (R) histogram (qual=0)

L2 vs UMBC : Correlate emissivity change with stemp change

Data


L2CCR: No
Dust


L1B vs L2CC

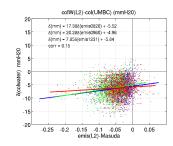
UMBC vs L2
retrievals

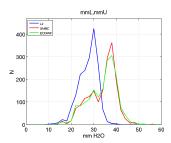
U = UMBC retrieval, L = L2 product Emis at 820 cm⁻¹ (blue), 960 cm⁻¹ (green) and 1231 cm⁻¹ (red) Note the negative correlation

blue = 820, green = 960, red = 1231 cm-1
(L) correlation (qual=0) (R) histogram (qual=0)

L2 vs UMBC : Correlate emissivity change with col water change

Introduction
Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2
retrievals

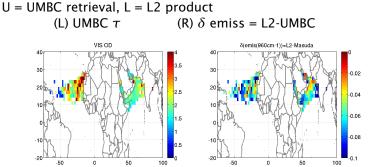

U = UMBC retrieval, L = L2 product Emis at 820 cm⁻¹ (blue), 960 cm⁻¹ (green) and 1231 cm⁻¹ (red)


Note the positive correlation

UMBC retrievals are even more "wet" than L2 retrievals (compared to the random clear case)

blue = 820, green = 960, red = 1231 cm-1

(L) correlation (qual=0) (R) histogram (qual=0)

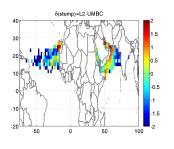


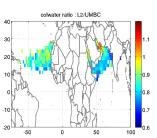
L2 vs UMBC : Tau and delta(emiss) for L2CCR qual=0

Introduction Data L2CCR: No Dust

UMBC vs L2 retrievals

Conclusi




L2 vs UMBC : ratio(colwater) and delta(stemp) for L2CCR qual=0

Introduction Data L2CCR: No Dust L1B vs L2CC

UMBC vs L2 retrievals

U = UMBC retrieval, L = L2 product (L) δ stemp = L2-UMBC (R) colwater ratio= L2/UMBC

Conclusions

Data
L2CCR: No
Dust
L1B vs L2CC
UMBC vs L2
retrievals
Conclusions

- A dust retrieval in the L2 PGE will (1) increase yields and (2) improve accuracy (esp. col water, a key AIRS parameter).
- This will give us good T/Q/sfc retrievals, that in turn provide dust optical depth retrievals from AIRS, day and night.
- We have shown that AIRS can be as good, or superior (night, no sunglint or bright surface issues) than other instruments for dust loading. We need to show the scientific community why hyperspectral sounding is more than just water vapor.
- We might get good dust loading with L2CC based retreivals, but we prefer to using L1b that have little cloud contamination.
- This use of aerosols in SARTA can also be used for cirrus and water cloud retrievals, again making hyperspectral of more interest to the scientific community.